Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effectiveness evaluation methodology of the measures for improving resilience of nuclear structures against excessive earthquake

Kurisaka, Kenichi; Nishino, Hiroyuki; Yamano, Hidemasa

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 8 Pages, 2023/05

The objective of this study is to develop an effectiveness evaluation methodology of the measures for improving resilience of nuclear structures against excessive earthquake by applying the failure mitigation technology. This study regarded those measures for improving resilience of important structures, systems, and components for safety to enlarge their seismic safety margin. To evaluate effectiveness of those measures, seismic core damage frequency (CDF) is selected as an index. Reduction of CDF as an effectiveness index is quantified by applying seismic PRA technology. Accident sequences leading to loss of decay heat removal are significant contributor to seismic CDF of sodium-cooled fast reactors (SFRs), and those sequences result in core damage via ultra-high temperature condition. This study improved the methodology to evaluate not only the measures against shaking due to excessive earthquake but also the measures at the ultra-high temperature condition. To examine applicability of the improved methodology, a trial calculation was implemented with some assumptions for a loop-type SFR. Within the assumption, the measures for improving resilience were significantly effective for decreasing CDF in excessive earthquake up to several times of a design basis ground motion. Through the applicability examination, the methodology for the effectiveness evaluation was developed successfully.

Journal Articles

Effectiveness evaluation methodology of the measures for improving resilience of nuclear structures at ultra-high temperature

Onoda, Yuichi; Kurisaka, Kenichi; Yamano, Hidemasa

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

The objective of this study is to develop an effectiveness evaluation methodology of the measures for improving resilience of nuclear structures at ultra-high temperature by using the failure mitigation technology. At the beginning, to identify the accident sequences having the potential to improve resilience, the characteristics of a next-generation loop-type sodium-cooled fast reactor (SFR) in Japan has been investigated by analyzing the event tree of level-1 and level-2 probabilistic risk assessment. As a result, event sequences of loss of heat removal systems (LOHRS) are identified. The effectiveness of the measures for improving resilience is evaluated by quantifying the reduction rate of core damage frequency before and after the introduction of the measures for improving resilience for all the accident sequences leading to LOHRS. To examine applicability of the developed methodology, a trial evaluation has conducted for a next-generation loop-type SFR in Japan. Through the applicability examined, the method for the effectiveness evaluation was developed successfully. The refinement of the conditional success probability of the measures for improving resilience is the future work.

2 (Records 1-2 displayed on this page)
  • 1